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Abstract. We present an adaptive algorithm for low Mach number reacting 
ows with

complex chemistry. Our approach uses a form of the low Mach number equations that

discretely conserves both mass and energy. The discretization methodology is based on a

robust projection formulation that accommodates large density contrasts. The algorithm

uses an operator-split treatment of sti� reaction terms and includes e�ects of di�erential

di�usion. The basic computational approach is embedded in an adaptive projection

framework that uses structured hierarchical grids with subcycling in time that preserves

the discrete conservation properties of the underlying single-grid algorithm. We present

numerical examples illustrating the performance of the method on both premixed and non-

premixed 
ames.
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1. Introduction

Detailed modelling of time-dependent reacting 
ows with realistic chemical mechanisms

places severe demands on computational resources. One approach to reducing this

computational cost is the use of local adaptive mesh re�nement to reduce the total number

of computational zones that must be advanced for a speci�c problem. Local re�nement for

steady combustion has been discussed by a number of authors. See for example, Smooke et

al. [36], Coelho and Pereira [7], de Lange and de Goey [10], Mallens et al. [22] Somers and

de Goey [34] and Bennett and Smooke [4] and the references cited in these works.

For time-dependent 
ows, Najm et al. [26] couple a local re�nement algorithm for species

and temperature with a vortex method for momentum. Pember et al. [28] present an adaptive

projection algorithm for time-dependent low Mach number combustion using simpli�ed

kinetics and an assumption of Lewis number of one. The methodology in Pember et al. [28]

uses a hierarchical structured re�nement approach based on the local adaptive projection

methodology developed by Almgren et al. [3]. The method presented here represents a

generalization of the Pember et al. methodology to incorporate complex chemistry and the

e�ects of di�erential di�usion.

A key consideration in developing a structured re�nement algorithm is the choice of

single-grid algorithm. For incompressible 
ows, projection-based fractional step methods

have proven to provide an eÆcient approach that is well suited to adaptive re�nement. For

low Mach number reacting 
ows, two di�erent projection-based sequential algorithms have

been proposed. One of these approaches has been used by Knio et al. [18] and Najm et al.

[25] to model 
ows with complex chemistry. Their approach is based on a computational

framework for low Mach number reacting 
ows developed by McMurtry et al. [23] and

Rutland and Ferziger [32].

The single-grid algorithm that forms the basis for our adaptive algorithm uses an

alternative numerical approach that is similar to the method used by Pember et al. [28].

The basis for the approach was �rst introduced by Lai [19] and Lai et al. [20]. Related

implementations or extensions include Hilditch and Colella [13] and Pember et al. [29, 27].

The key elements in the extension of the algorithm presented in Pember et al. [28] to the

current setting are the use of a symmetric operator-split approach that is second-order

accurate in time and the treatment of di�erential di�usion.

Although our approach is similar in spirit to the approach of Knio et al. and Najm

et al., there are two major di�erences. First, in the approach of Knio et al. and Najm et

al., an evolution equation for density is derived by di�erentiating the equation of state in

time and using the temperature and species evolution equations to replace the temporal

derivative of those quantities by spatial operators. Temperature is then computed directly

from the equation of state. In our approach, we solve for species mass densities and enthalpy
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as primary unknowns. We construct a conservative discretization for mass and energy but

allow the approximate solution to drift o� the constraint imposed by the equation of state

at �xed ambient pressure. In section 2, we discuss how this drift is controlled.

The second major di�erence between our approach and that of Knio and Najm relates to

the projection step of the algorithm. The �rst step of the algorithm computes an intermediate

velocity �eld that does not satisfy the constraint. The projection step corrects the velocity

so that the low Mach number divergence constraint is satis�ed. Knio and Najm formulate

a projection algorithm in terms of a constant-coeÆcient pressure-Poisson equation to be

solved at each time step. Here, we de�ne the projection as an orthogonal decomposition

of velocity in a density-weighted space. While our approach leads to a somewhat more

expensive variable-coeÆcient elliptic solve, it has the advantage that it easily accommodates

large density contrasts (800:1). (see Almgren et al. [1] and Sussman et al. [35]).

The remainder of the paper is organized as follows. In section 2, we introduce

the mathematical model and describe the computational framework for the projection

methodology. We will not discuss in detail the Godunov-type upwind advection algorithm

for computing advective derivatives (this aspect of algorithm is identical to those detailed

in Almgren et al.[1] and Pember et al.[28]). In section 3, we present the second-order time

discretization of the species and enthalpy equations, including the operator-split treatment of

detailed chemistry and the discretization of the terms due to di�erential di�usion. In section

4, we give an overview of our adaptive methodology, focusing primarily on modi�cations to

the methodology presented in [1, 28] required for the present application. In section 5, we

present results of applying this numerical solution algorithm to two problems: the evolution

of a strong vortex interacting in two dimensions with a planar premixed H2-O2 
ame, and

the response of a co-
ow axisymmetric laminar CH4-O2 
ame to a periodically modulated

fuel stream. The �nal section presents some conclusions and discusses future generalizations

of the methodology.

2. Mathematical model and computational framework

The model presented here is based on the model for low Mach number combustion

introduced by Rehm and Baum [30] and rigorously derived from low Mach number

asymptotic analysis by Majda and Sethian [21]. We consider a gaseous mixture ignoring

Soret and Dufort e�ects, body forces and radiative heat transfer, and assume a mixture

model for species di�usion[37, 17]. For low-speed 
ow in an uncon�ned domain, we can

write

p(x; t) = p0 + �(x; t)

where p0 is the ambient thermodynamic pressure. The low Mach number model assumes

that the perturbational pressure �eld, �=p0 � O (M2), where M is the Mach number, and
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that all thermodynamic quantities are independent of �. In the low Mach number limit,

the equations describing momentum transport and conservation of species and enthalpy are

given by

�
DU

Dt
= �r� +r � �; (1)

@�Ym

@t
+r � U�Ym = r � �DmrYm � _!m; (2)

@�h

@t
+r � U�h = r � �rT +

X
m

r � �hm(T )DmrYm (3)

where � is the density, U is the velocity, Ym is the mass fraction of species m, h is the

enthalpy of the gas mixture, and T is the temperature. Here, _!m, the destruction rate for

�Ym due to chemical reactions, is speci�ed via a collection of fundamental reactions using a

CHEMKIN-III[16] compatible database. The stress tensor is given by

� = �

 
@Ui

@xj
+
@Uj

@xi
�

2

3
Æijr � U

!

where �(Ym; T ) is the viscosity, Dm are the species mixture-averaged di�usion coeÆcients[14],

� is the thermal conductivity and hm(T ) is the enthalpy of species m. These evolution

equations are supplemented by an equation of state:

p0 = �RmixT = �RT
X
m

Ym

Wm

(4)

where Wm is the molecular weight of species m, and by a relationship between enthalpy,

species and temperature:

h =
X
m

Ymhm(T ): (5)

Neither species di�usion nor reactions redistribute total mass; hence, we have
P

mDmrYm =

0 and
P

m _!m = 0. Summing the species equations and noting that
P

m Ym = 1, we see that

(2) implies the continuity equation

@�

@t
+r � �U = 0: (6)

The evolution speci�ed by (1-3) is subject to the constraint on velocity that

r � U =
1

�cpT

 
r � �rT +

X
m

�DmrYm � rhm

!

+
1

�

X
m

W

Wm

r � �DmrYm +
1

�

X
m

 
hm(T )

cp;mixT
�

W

Wm

!
_!m � S (7)

where W = (
P

m Ym=Wm)
�1 and cp;mix =

P
m Ymdhm=dT . The constraint (7) is obtained

by di�erentiating the equation of state along particle paths and replacing the Lagrangian

derivatives by expressions obtained from (2, 3, 5).
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As discussed in the introduction, we have written the low Mach number equations in a

form that directly expresses conservation of both species and enthalpy. In a fractional step

approach it is impossible to numerically conserve species and enthalpy while satisfying the

equation of state (4). In our approach we discretely conserve both species and energy so that

the evolution of these quantities does not satisfy the equation of state (with T determined

from (5)). In order to prevent the algorithm from drifting too far o� the equation of state

we add a correction term to the constraint (7); namely, we use the modi�ed constraint

r � U = S + f
cp;mix � R

�t cp;mixp̂
(p̂� p0) � Ŝ (8)

where p̂ is the thermodynamic pressure, de�ned by (4) as a function of the species densities

and enthalpy and f is a numerical damping factor, f < 1. This additional term serves

to damp the system back onto the ambient equation of state if the solution drifts o� that

constraint. (See Pember et al. [28] for a discussion of this term and a heuristic for its

derivation.)

Computational framework

In this section we give an overview of the projection formulation for solving (1{3) subject

to the modi�ed constraint (8). The reader is referred to Pember et al. [28], and Almgren et

al. [1] for details of the algorithm. For the methodology described in this paper, the velocity,

species densities and enthalpy are all de�ned at cell centers, denoted by a subscript{ij.

The perturbational pressure, �, is a nodal quantity with values denoted by subscripts{

i+ 1=2; j + 1=2 that is de�ned at 1=2 time levels. � is used to compute a cell-centered gradient,

r� at tn+
1=2 in the momentum equation (1).

The overall projection formulation is a multistep process. In the �rst step, we use

an unsplit second-order Godunov procedure to predict a time-centered advection velocity,

UADV;�; using the cell-centered data at tn and the lagged pressure gradient from the interval

centered at tn�
1=2: The provisional �eld, UADV;�, represents a normal velocity on cell edges

analogous to a MAC-type staggered grid discretization of the Navier-Stokes equations (see

[12], for example). However, UADV;� fails to satisfy the time-centered divergence constraint.

We apply a discrete projection by solving the elliptic equation

DMAC 1

�n
GMAC�MAC = DMACUADV;� �

 
Ŝn +

�t n

2

Ŝn � Ŝn�1

�t n�1

!
(9)

for �MAC , where DMAC represents a centered approximation to a cell-based divergence

from edge-based velocities, and GMAC represents a centered approximation to edge-based

gradients from cell-centered data. The solution, �MAC, is then used to de�ne

UADV = UADV;� �
1

�n
GMAC�MAC :
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UADV is a second-order accurate, staggered-grid vector �eld at tn+
1=2 that discretely satis�es

the constraint (8), and is used for computing the time-explicit advective derivatives for U ,

�h and �Ym:

In the next step of the algorithm we advance the advection-reaction-di�usion system

for U; �h; and �Ym: First we advance �h and �Ym to tn+1: This procedure is itself a complex

multistep process that is discussed in detail in the next section. Given the new-time values

for �h, �Ym and � =
P

m �Ym we compute the temperature and 
uid viscosity at tn+1 and

evaluate Ŝn+1 using �nite di�erence approximations.

We then compute an intermediate velocity �eld, Un+1;� using the lagged pressure

gradient, by solving

�n+
1=2
Un+1;� � Un

�t
+ [(UADV � r)U ]n+

1=2 =
1

2
(r � �n +r � �n+1;�)�r�n�

1=2

where �n+1;� = �n+1((r+rT )Un+1;��2=3ÆijŜ
n+1) and �n+

1=2 = 1

2
(�n+�n+1). At this point, the

intermediate velocity �eld Un+1;� does not satisfy the constraint. We apply an approximate

projection to update the pressure and to project Un+1;� onto the constraint surface. In

particular, we solve

L�� = D(Un+1;� +�t G�n�
1=2)� Ŝn+1 (10)

for nodal values of �, where L� is a �nite element approximation to r � 1
�
r with � evaluated

at tn+
1=2: In this step, D is a discrete second-order operator that approximates the divergence

at nodes from cell-centered data, and G = �DT approximates a cell-centered gradient from

nodal data.

In the projection formulation � satis�es Neumann boundary conditions at solid walls

and in
ow boundaries. At out
ow boundaries, Dirichlet conditions are generated to suppress

any tangential accelerations on the 
uid leaving the domain. We compute nodal values for

Ŝn+1 for the solution of (10) using a volume-weighted average of cell-centered values. Finally,

we determine the new-time cell-centered velocity �eld from

Un+1 = Un+1;� �
1

�
G�

and the new time-centered pressure from

�n+
1=2 = �:

We note that this represents an improved version of the approximate projection algorithm

over the approach used by Pember et al. [28] (see Almgren et al. [2]). This completes the

description of the basic projection scheme.
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3. Numerical integration of species and enthalpy equations

In this section we describe the numerical integration procedure for the species and

enthalpy equations. We base the approach on the assumption that the reactions are \sti�"

relative to the time scales associated with the 
uid dynamics, and that accurately tracking

the chemical kinetics will require subcycling in time with respect to a time step based on

CFL considerations. In the algorithm presented here we use an alternate form of enthalpy

equation that emphasizes deviation from unity Lewis number,

@�h

@t
+r � U�h = r �

�

cp;mix

rh+
X
m

r � hm(�Dm �
�

cp;mix

)rYm: (11)

As an aside, the case of unity Lewis number corresponds to �Dm = �
cp;mix

for all m so that

the second term on the right hand side of (11) vanishes. By substituting the de�nition of

enthalpy (5) into the enthalpy equation, (3), and evaluating species derivatives using the

species evolution equations, (2), we obtain the following evolution equation for temperature

�cp;mix

DT

Dt
= r � �rT +

X
m

�Dmrhm(T ) � rYm +
X
m

_!mhm(T ): (12)

We use this equation for predicting a provisional temperature to evaluate 
uid properties

at the new time level prior to completing the predictor step for species and enthalpy. This

equation is also used to predict the temperature at the cell edges in the Godunov step

discussed below. In all other cases, the temperature is computed by inverting (5).

Operator-split formulation

We advance (2, 11) using a splitting scheme that computationally decouples the

procedure into two independent operators, representing the chemistry and CFD components.

We de�ne the pointwise chemistry operator, HC
dt, such that HC

dt(Y
n
m; T

n) ! (Y n+1
m ; T n+1)

represents a discrete chemistry evolution of the reaction kinetics from tn to tn+1, using

@�Ym

@t
= � _!m

�cp;mix

@T

@t
=
X
m

_!mhm(T )

under adiabatic, �xed-volume conditions. We note that although the kinetics integration

modi�es the temperature �eld, there are no net changes in enthalpy. The changes in

temperature that result from the chemistry step are consistent with the change in mixture

composition associated with the reactions and a constant enthalpy within the cell.

In our implementation, we integrate the chemistry component, HC , using time-implicit

backward di�erence methods, as implemented in VODE[5], a general-purpose sti� ODE

integration software package. VODE utilizes adaptivity in order of accuracy and subcycled
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time-step selection so that an absolute error tolerance of 10�16 in mass fractions is maintained

throughout. Typically, the resulting scheme is between third and �fth order convergent in

�t .

After �Ym and T have been advanced from tn to tn+
1=2 by HC , we integrate the system

(2,5,11) using a sequential predictor-corrector Crank-Nicolson scheme over an interval �t,

setting _!m = 0. We represent this component of the solution algorithm by the operator,

HA�D
dt . We complete the time step for the species and energy equations by performing a

second chemistry evolution, HC
dt=2. This combined process de�nes a symmetric Strang-type

splitting,

Hdt(Y
n
m; h

n) = HC
dt=2H

A�D
dt HC

dt=2 ! (Y n+1
m ; hn+1)

which constitutes a second-order temporal discretization of the complete system. It is worth

noting that Dirichlet conditions, such as those at in
ow and coarse-�ne boundaries, must

be advanced by the �rst HC operation in order to provide consistent boundary data for

HA�D. Once the evolution of the species and energy equations are complete, we can evaluate

the modi�ed constraint (8) using the state and transport/thermodynamic properties at

(�; Ym; T; h)
n+1 and an e�ective _!m averaged over the time step.

Advection{Di�usion step

There are several possible approaches to solving the species di�usion and enthalpy

equations within the Godunov advection-di�usion framework. One approach is to compute

advective derivatives and then compute the di�usive transport for all of the equations

simultaneously using a non-linear iterative scheme. There are a variety of other approaches

that iterate the system with varying degrees of coupling. The scheme used here is based

on a sequential approach in which the equations are solved individually in a speci�ed order,

updating properties as appropriate. This scheme, which follows that of Pember et al. [28],

is, essentially, a non-linear Gauss-Seidel iteration scheme for the complete system. The basic

approach is to solve the equations with lagged 
uid properties to determine predicted values

of the solution at the new time level. These predicted values can then be used to recompute

values of the 
uid properties required for evaluating the solution at the new time level to

second-order accuracy.

For the advection-di�usion step we begin with data obtained by advancing the chemistry

with HC
dt=2. We refer to this data with a superscript n in the remainder of the section. As

with the velocity equation discussed before, we �rst compute edge-centered states for �Ym
and T at tn+

1=2 = t + �t=2 using a second-order Godunov procedure. Time-centered edge

values of �Ym and T are used to compute tn+
1=2 values for � and �h using

P
m �Ym = � and

(5). Because neither reactions or species di�usions transport mass, we can now update �
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using the discrete form of the continuity equation

�n+1 = �n ��t r �

 X
m

UADV �Y n+1=2
m

!
:

Given �n+1 and 
uid properties (�; cp;mix; hm)
n computed after the chemistry step, we

predict a preliminary new-time temperature, ~T n+1;�, using a Crank-Nicolson discretization

of the temperature equation

�n+
1=2cnp;mix

 
~T n+1;� � T n

�t
+
�
UADV � rT

�n+1=2

!

=
1

2

�
r�nrT n +r�nr ~T n+1;�

�
+
X
m

�Dn
mrhm(T

n) � rY n
m (13)

where �n+
1=2 = 1=2(�n+1+�n). Next, we approximate the mixture-averaged di�usivities at tn+1

using Y n
m and the provisional predicted temperature, ~T n+1;�. We denote these di�usivities

as Dn+1;�
m = Dn+1;�

m (Y n
m;

~T n+1;�), and use them to predict a preliminary ~Y n+1;�
m from

�n+1 ~Y n+1;�
m � �Ym

�t
+
�
r � UADV �Ym

�n+1=2
=

1

2
r �

�
�n+1Dn+1;�

m r ~Y n+1;�
m � �n

m

�
: (14)

Here, �n
m represents the species di�usion 
uxes at tn. Ideally, these di�usion 
uxes would

be de�ned by �n
m = ��nDn

mrY
n
m. However, the mixture-averaged formulation for Dm does

not preserve mass balance, i.e. numerically,
P

m �n
m 6= 0. We want to modify these di�usive


uxes, �n
m, to sum discretely to zero. Here, we consider two approaches for making this

modi�cation. For both algorithms we want to avoid the selection of a single \dominant"

species for the entire problem whose di�usive 
ux is de�ned by the requirement that the

di�usive 
uxes sum to zero.

The �rst approach we consider is to identify the locally dominant species and adjust

its di�usive 
ux. When
P

m
~�m on an edge is non-zero, the di�usion 
uxes on that edge

are transporting net mass across that edge. Based on the sign of
P

m
~�m, we identify, for

each face, the corresponding cell-center that is receiving excess mass. For concreteness, we

consider the case in which
P

m
~�m > 0 at edge-i + 1=2; j; k. In this case, the di�usion 
uxes

are transporting net mass from cell-i; j; k to cell-i + 1; j; k. We then modify �m for the

species, m, in cell-i + 1; j; k with the largest mass fraction in that cell so that the di�usive


uxes sum to zero. For cases in which there is a dominant species this approach reduces

to the traditional treatment such as that found in the PREMIX code [15]. This is a robust

and e�ective approach; however, it is not free-stream preserving for the chemical species.

In particular, the di�erential equations have the property that a chemical species with an

initially constant mass fraction that does not participate in any chemical reactions should

remain constant. The approach outlined above, as well as traditional treatments, do not

satisfy this property; they will introduce an erroneous variation in species concentrations.

We propose a second approach to modifying di�usive 
uxes, �n
m, so that they are free-

stream preserving. In this approach, we modify �n
m using a re-distribution idea originally
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introduced by Chern and Colella[6] to correct conservation errors in a volume-of-
uid

shock tracking algorithm. In particular, given the preliminary species di�usion 
uxes,
~�m = ��DmrYm, we identify \excess" 
ux and redistribute the excess in a mass-weighted

manner so that the adjusted species di�usion 
uxes, �m, satisfy
P

m �m = 0 on each cell

edge.

As before, when
P

m
~�m on an edge is non-zero, the di�usion 
uxes on that edge are

transporting net mass across that edge. Based on the sign of
P

m
~�m, we identify for each

face the corresponding cell-center that is receiving excess mass. To modify the 
uxes so that

they sum to zero, we want to reduce the 
uxes that contribute to that net mass 
ux while

leaving the 
uxes of the opposite sign alone.

We again consider the case in which
P

m
~�m > 0 at edge-i+ 1=2; j; k so that the di�usion


uxes are transporting net mass from cell-i; j; k to cell-i+1; j; k. We group the 
uxes based

on whether their contribution to the update is positive or negative. We denote the respective

groups by ~�+k and ~��l . Then we haveX
k

~�+k +
X
l

~��l > 0 :

We want to determine reduction factors �k for the positive 
uxes so thatX
k

�k
~�+k +

X
l

~��l = 0: (15)

with 0 < �k < 1. However, reducing the 
ux ~�+k will also reduce the amount of species k

in cell-i + 1; j; k. We want balance the 
ux reduction amongst the di�erent species, with

a greater reduction for species that have a larger mass density. Thus, we want the 
ux

reduction for species k to be proportional to the mass fraction of that species that is present;

i.e.,

(1� �k) ~� = � ~Yk (16)

for some � where Yk corresponds to the mass fraction in the cell-i + 1; j; k. The equations

(15) and (16) de�ne a linear system for the �k and �. It is easy to show that for resulting

�k are between zero and one. Thus, if we de�ne �+k = �k
~�+k and ��l = ~��l then

P
m �m = 0.

After the solution of the species di�usion equation (14) the initial new-time 
uxes,
~�n+1;�
n � ��n+1Dn+1;�

m r ~Y n+1;�
m also do not sum to zero. We again apply the redistribution

procedure to modify these 
uxes to obtain �n+1;�
m that sum to zero. These corrected 
uxes

are then used to compute the predicted species mass fractions Y n+1;� using

�n+1Y n+1;�
m � �nY n

m

�t
+
�
r � UADV �Ym

�n+1=2
= �

1

2
r �

�
�n+1;�
m + �n

m

�
:

We now evaluate the 
uid properties (�; cp;mix; hm)
n+1;� with the predicted species mass

fractions Y n+1;�
m and preliminary predicted temperature ~T n+1;�, and use them to compute
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the predicted new-time enthalpy hn+1;� using

�n+1hn+1;� � �nhn

�t
=
�
r � UADV �h

�n+1=2
+
1

2

"
r �

�n+1;�

c
n+1;�
p;mix

rhn+1;� +r �
�n

cnp;mix

rhn
#

(17)

�
1

2

X
m

r �

"
hn+1;�m

 
�n+1;�
m +

�n+1;�

c
n+1;�
p;mix

rY n+1;�
m

!
+ hnm

 
�n
m +

�n

cnp;mix

rY nm

!#
:

Finally, we update the predicted new-time temperature, T n+1;� using (5). This completes

the predictor step of the advection-di�usion algorithm.

Prior to the corrector step of the algorithm, the provisional new-time values of

(Ym; h; T )
n+1;� are used to recompute new-time 
uid properties, (�; hm;Dm; cp;mix)

n+1. We

then recompute (Ym; h)
n+1. Y n+1

m is obtained by solving

�n+1 ~Y n+1
m � �nY n

m

�t
+
�
r � UADV �Ym

�n+1=2
=

1

2
r �

�
�n+1Dn+1

m r ~Y n+1
m � �n

m

�
(18)

for the provisional ~Y n+1
m . As before, the species di�usion 
uxes computed from the solution

of (18) do not sum to zero. We apply our 
ux redistribution scheme to obtain the adjusted

species 
uxes, �n+1
m and then update Y n+1

m using

�n+1Y n+1
m � �nY n

m

�t
+
�
r � UADV �Ym

�n+1=2
= �

1

2
r �

�
�n+1
m + �n

m

�
:

The �nal new-time enthalpy is then given by

�n+1hn+1 � �nhn

�t
=
�
r � UADV �h

�n+1=2
+
1

2

"
r �

�n+1

cn+1p;mix

rhn+1 +r �
�n

cnp;mix

rhn
#

(19)

�
1

2

X
m

r �

"
hn+1m

 
�n+1
m +

�n+1

cn+1p;mix

rY n+1
m

!
+ hnm

 
�n
m +

�n

cnp;mix

rY nm

!#
:

The �nal new-time temperature, T n+1 is computed by once again inverting (5), with hn+1

and Y n+1
m .

Before discussing the incorporation of this methodology in an adaptive mesh re�nement

algorithm, we note some of the properties of the algorithm. First, we emphasize that the

temperature equation is used only in an auxiliary capacity in the algorithm. The energy

is evolved using the numerically conservative discretized enthalpy equation, (17) and (19).

Second, since we explicitly ensure that
P

m �m � 0 and guarantee that
P
Ym � 1, the sum

of discrete species equations yields a conservative discretization of the continuity equation.

As noted earlier, although the scheme rigorously satis�es conservation of mass and enthalpy,

the evolution does not strictly maintain the equation of state at ambient pressure. The

degree to which the equation of state is not satis�ed will be illustrated in the results section.

Since the low Mach number asymptotics used to derive the governing equation show that

the thermodynamic pressure only satis�es (4) to O (M2), relaxing the imposition of (4) is a

reasonable way of dealing with the overdetermined system.
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Our scheme also satis�es certain free-stream preservation properties. First, the method

is designed so that for non-reacting isothermal 
ows the temperature remains constant

independent of the velocity �eld and species distribution. The key issue in enforcing this

property is the construction of the advective enthalpy 
ux at cell edges. As noted above, the

Godunov edge states are constructed for temperature and species densities, then enthalpy


ux is constructed from these values. The algorithm is also free-stream preserving for

species mass fractions for the second, redistribution-based procedure for adjusting di�usive


uxes. In this case, if a mass fraction is initially constant and does not participate in any

chemical reactions the algorithm will preserve that constant regardless of the velocity �eld

or chemical reactions among the other species. Speci�cally, the 
ux redistribution scheme

does not modify di�usion 
uxes that were initially zero, so there is no mechanism to generate

structure in the pro�le of that species. Note that this treatment departs frommore traditional

procedures employed to overcome the issue of discrete mass conservation, such as de�ning

a designated \excess" species, or a \conservation di�usion velocity"[8], neither of which can

be applied without potentially generating spurious signals in constant �elds.

4. Local adaptive mesh re�nement

In this section we present an overview of the adaptive projection algorithm. The

framework is the same as that developed in Almgren et al.[1], extended to low Mach number

combustion by Pember et al.[28]. As in the discussion of the single-grid time advance, we

will focus primarily on modi�cations to the base algorithm that are required to incorporate

di�erential di�usion and complex chemistry. We refer the reader to the above papers for

more details of the basic algorithm.

Our implementation of AMR is based on a sequence of nested grids with successively

�ner spacing in both time and space. In this approach, �ne grids are formed by evenly

dividing coarse cells by a re�nement ratio, r, in each direction. Increasingly �ner grids

are recursively embedded in coarse grids until features of the solution are adequately

resolved. An error estimation procedure based on user-speci�ed criteria evaluates where

additional re�nement is needed and grid generation procedures dynamically create or remove

rectangular �ne grid patches as resolution requirements change.

The adaptive integration algorithm advances grids at di�erent levels using time steps

appropriate to that level, based on CFL considerations. The multi-level procedure can most

easily be thought of as a recursive algorithm in which, to advance level `; 0 � ` � `max, the

following steps are taken:

� Advance level ` in time as if it is the only level. If ` > 0, obtain boundary data using

time-interpolated data from the grids at `� 1, as well as physical boundary conditions,

where appropriate.
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� If ` < `max

{ Advance level (` + 1) for r time steps, �t`+1 = 1

r
�t`, using level-` data and the

physical boundary conditions.

{ Synchronize the data between levels ` and `+1, and interpolate corrections to �ner

levels [`+ 2; : : : ; `max].

The adaptive algorithm, as outlined above, performs operations to advance the grids

at each level independent of other levels in the hierarchy (except for boundary conditions)

and then computes a correction to synchronize the levels. Loosely speaking, the objective

in this synchronization step is to compute the modi�cations to the coarse grid that re
ect

the change in the coarse grid solution due to the presence of the �ne grid. More speci�cally,

when solving on a �ne grid, we supply Dirichlet boundary conditions from the coarse grid.

This leads to a mismatch in the associated 
uxes at the coarse-�ne interface that is corrected

by the synchronization.

For the adaptive projection methodology presented here there are three basic steps in

the synchronization. First, the values obtained for U , �Ym and �h are averaged from the �ne

grid onto the underlying coarse grid. We view the resulting data as de�ning a preliminary

composite grid solution that is consistent between levels. We will denote this preliminary

solution with a p superscript in the remainder of the section. To complete the synchronization

we need to correct inconsistencies arising from the use of Dirichlet boundary conditions

at coarse-�ne boundaries. First, we compute increments to �Ym and �h that correct the


ux mismatches at coarse-�ne interfaces. Finally, we correct the velocity �eld to satisfy a

divergence constraint over the composite grid system.

There are two components that contribute to 
ux mismatch. First, UADV , the edge-

based advection velocity satis�es the constraint on the coarse level and the �ne level

separately. However, since we only satisfy the Dirichlet matching condition for �MAC in

(9), the value of UADV computed on the coarse level does not match the average value on

the �ne grid. We de�ne the mismatch in advection velocities by

ÆUADV;` = �UADV;`;n+1=2 +
1

r2

r�1X
k=0

X
edges

UADV;`+1;n+k+1=2

along the coarse-�ne boundary. We then solve the elliptic equation

DMAC 1

�
GMACÆe` = DMACÆUADV;`

and compute

UADV;`;corr = �
1

�
GMACÆe`

which is the correction needed for UADV to satisfy the constraint and matching conditions on

the composite (`, `+1) grid hierarchy. This correction �eld is used to compute a modi�cation
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to the advective 
uxes for species and enthalpy that re
ects an advection velocity �eld that

satis�es the constraint on the composite grid.

The second part of the mismatch arises because the advective and di�usive 
uxes on

the coarse grid were computed without explicitly accounting for the �ne grid, while on the

�ne grid the 
uxes were computed using coarse-grid Dirichlet boundary data. We de�ne the


ux discrepancies

ÆF�h = �t`

0
@�F `;n+1=2

�h +
1

r2

r�1X
k=0

X
edges

F
`+1;n+k+1=2
�h

1
A

and

ÆF�Ym = �t`

0
@�F `;n+1=2

�Ym
+

1

r2

r�1X
k=0

X
edges

F
`+1;n+k+1=2
�Ym

1
A

where F is the total (advective+di�usive) 
ux through a given interface prior to these

synchronization operations. Since mass is conserved, corrections to density, Æ�sync, on the

coarse grid associated with mismatched advection 
uxes may be computed explicitly

Æ�sync = �DMAC

 X
m

UADV;corr�Ym

!n+1=2

+
X
m

ÆF�Ym :

The post-sync new-time value of density, �n+1 = �n+1;p+ Æ�sync. Given the corrected density

�n+1 we can decompose the corrections for Ym and h into

Æ (�Ym)
sync = Y n+1;p

m Æ�sync + �n+1ÆY sync

and

Æ (�h)sync = hn+1;pÆ�sync + �n+1Æhsync:

Computing ÆY sync
m and Æhsync requires solution of a linear system, since the 
ux mismatch

contains implicit di�usion 
uxes from the Crank-Nicolson discretization in HA�D
dt . The

provisional correction Æ ~Y sync
m on the coarse level-` grids is obtained by solving�

�n+1 �
�t

2
r�n+1Dn+1

m r

�
Æ ~Y sync

m = �DMAC
�
UADV;corr�Ym

�n+1=2
+ ÆF�Ym : (20)

However, as in the single-level algorithm, the species correction 
uxes must sum to zero to

preserve mass conservation. We compute the adjusted species correction 
ux, Æ�sync from

Æ~�sync
m � ��n+1Dn+1

m rÆ ~Y sync
m so that

P
m Æ�sync

m = 0 using one of the procedures discussed

above. This adjusted 
ux is used to compute the correction, ÆY sync
m needed to update Ym and

to form the forcing term due to non-unity Lewis number e�ects in the correction equation

for �h: 
�n+1 �

�t

2
r�n+1

�n+1

cn+1p;mix

r

!
Æhsync = �DMAC

�
UADV;corr�h

�n+1=2
+ ÆF�h

+r �
X
m

hm(T
n+1;p)

 
�n+1

cn+1p;mix

rÆY sync
m + Æ�sync

m

!
: (21)
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The corrections, ÆY sync
m , and Æhsync are added to the coarse �eld at level-`, and interpolated

to all �ner levels. Finally, a new temperature �eld is computed using (5) on all a�ected

levels.

A similar process is also used to generate a correction to the velocity �eld. However, the

velocity 
ux correction must be projected to obtain the component satisfying the constraint

that updates U and the component that updates �. At this point there are two additional

corrections needed for the composite velocity �eld:

� A correction arising because the projection at level `+ 1 used Dirichlet data from level

`, leading to a mismatch in normal derivative at coarse-�ne boundaries

� The temperature and species adjustment in the �rst part of the synchronization leads

to an increment in the computed Ŝ �eld.

Since the projection is linear, both of these corrections as well as the projection of the velocity


ux correction can be combined into a single, multi-level node-based synchronization solve

performed at the end of a coarse-grid time step.

5. Numerical results

In this section we present computational results from two di�erent combustion regimes

to validate the numerical method presented above. In the �rst example, we model a premixed

hydrogen 
ame, using the results to illustrate the convergence properties of the single-grid

algorithm and to demonstrate that the adaptive algorithm e�ectively computes the same

solution as a uniform �ne grid. In the second example, we illustrate the behavior of the

method on a steady and an unsteady methane di�usion 
ame.

Premixed Flame

As an initial test of the methodology we apply our algorithm without re�nement to

the evolution of a one-dimensional premixed hydrogen 
ame. The chemistry mechanism

(consisting of 9 species and 27 reactions), and associated thermodynamic and transport

databases were generated for this case by stripping the carbon chemistry from the GRI-Mech-

1.2 [11] distribution. The solution is initialized with a re�ned steady solution computed using

the PREMIX code from the CHEMKIN-III library [15]. The inlet stream (mole fractions

X(H2 : O2 : N2) = (0:1909 : 0:0910 : 0:7181)) enters at 79:675 cm s�1 and 298K. The initial

pro�le exhibits a peak XH2O2

= 5:83� 10�5 centered at 0:57 cm in a 1:6 cm domain, and is

evolved for 80�s on uniform grids of 64, 128 and 512 cells. The time step used in each case

was �t = 4; 2 and 0:5�s, respectively.

In Table 1 we give rates of convergence in L1, L2, and L1, computed by comparing errors

over the 64- and 128-point resolutions to the (steady) PREMIX solution used to initialize the
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Table 1. Convergence rates, RN , for LN norm of error, measured as deviation from the

PREMIX steady solution. Rates for the local dominant species method appear in the left

side of the table; rates for the redistribution method appear on the right side.

Dominant Species Redistribution

Quantity R1 R2 R1 R1 R2 R1

T 2.12 1.98 1.57 1.98 1.90 1.50

V 2.42 2.42 2.42 2.14 2.15 2.16

H 2.49 2.32 2.06 1.62 1.48 1.39

� 2.13 1.86 1.34 1.80 1.66 1.16

YH2 2.00 1.98 1.76 1.64 1.98 2.22

YH 3.04 2.76 2.43 2.92 2.67 2.37

YO 2.53 2.47 2.25 2.46 2.41 2.13

YO2 1.98 2.08 1.87 1.99 2.15 1.98

YOH 2.83 2.78 2.09 2.87 2.89 2.07

YH2O 1.98 2.04 1.69 1.45 1.58 1.38

YHO2 1.35 1.08 0.68 1.40 1.11 0.71

YH2O2 1.64 1.67 1.36 1.68 1.71 1.39

YN2 1.97 1.73 1.33 0.40 0.47 0.65

problem. Results are presented for both approaches to adjusting di�usive 
uxes, as described

above. For the �rst 
ux adjustment approach, based on a locally dominant species, each

quantity is converging with second-order accuracy in L1, with the exception of trace species

in the 
ame zone. For the redistribution-based 
ux adjustment algorithm, apparent accuracy

degradation is more evident, most notably the behavior of YN2

. This re
ects the di�erence

in treatment of the two 
ux adjustment approaches. Although YN2

should remain constant

for this problem, N2 is the dominant species throughout the domain and absorbs the entire

corrective 
ux in the PREMIX algorithm as well as in our �rst approach.

We also present, in Table 2, convergence data for each approach compared to a high-

resolution solution computed on a 512-point grid. The convergence rate in max norm is

1.35 or higher with the exception of HO2 which forms a narrow spike in the solution. We

also observe that both approaches to correcting the di�usive 
uxes from the mixture model

seem to be e�ective with neither approach emerging as a clear preference. A more detailed

examination of these approaches will appear in a future work.

As a more interesting test of the methodology, we use the same premixed hydrogen


ame as the initial condition for a two-dimensional vortex 
ame interaction. The problem

speci�cation is similar to problems considered by Najm et al. (see [26], for example).

Speci�cally we extend the laminar 
ame solution to two space dimensions and superimpose

the velocity �eld induced by a countersign vortex pair (see Figure 1). The vortices have

Gaussian cores with centers 0:2 cm apart and generate a maximum rotational velocity of
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Table 2. Convergence rates, RN , for LN norm of error, measured as deviation from a

�ne-grid solution. Rates for the local dominant species method appear in the left side of

the table; rates for the redistribution method appear on the right side.

Dominant Species Redistribution

Quantity R1 R2 R1 R1 R2 R1

T 2.25 2.02 1.58 2.24 2.01 1.56

V 2.18 2.18 2.19 2.13 2.13 2.14

H 2.47 2.39 2.10 2.29 2.21 2.09

� 2.21 1.85 1.40 2.16 1.85 1.35

YH2 2.31 2.23 1.89 2.51 2.28 1.93

YH 2.62 2.57 2.48 2.61 2.56 2.44

YO 2.59 2.54 2.22 2.59 2.54 2.18

YO2 2.26 2.25 2.02 2.27 2.25 2.04

YOH 2.83 2.80 2.18 2.85 2.83 2.20

YH2O 2.12 2.12 1.75 1.99 2.05 1.76

YHO2 1.43 1.15 0.74 1.45 1.16 0.76

YH2O2 1.74 1.74 1.38 1.76 1.75 1.40

YN2 2.83 2.44 1.88 2.45 2.20 1.95

14:6 m s�1. The vortex pair induces a self-propagation velocity of 3:1 m s�1. We exploit

symmetry and only compute on the left half of the domain which is 0:4 cm wide and 1:6 cm

high.

First, we solve the problem on a uniform grid with mesh spacing of 128 � 512. We

then repeat the problem with adaptive re�nement on a 32 � 128 base grid with two levels

of re�nement by a factor of two each. We trigger the �nest grid on the 
ame zone using

H2O2 as a marker for the 
ame. We also re�ne regions of high vorticity with one factor of

two re�nement. In Figure 2 we show the enthalpy, temperature and XH2O2

at 53:6�s. For

each �gure we show the adaptive solution on the left and the (re
ected) uniform solution

on the right. The results are in excellent agreement suggesting that the adaptive algorithm

is producing essentially the same result as a uniform �ne grid. Figure 3 presents a similar

comparison of uniform and adaptive solutions at 85:3�s. Again the results are in good

agreement. At the later time we do note that the top of the 
ame above the vortex is

slightly lower in the adaptive case. This shows that the resolution of the vortex, which is

represented on a coarser grid, does not quite match the �ne grid solution.

Di�usion 
ame

As a second example, we apply our methodology to a laminar di�usion 
ame modelled by

Mohammed et al. [24]. In their work, an axisymmetric di�usion 
ame is modelled using a 26-
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2mm

16 mm

4mm

5.7mm

Figure 1. Schematic of the premixed hydrogen 
ame/vortex problem. The shaded line

represents the position of the 
ame. Cold unburnt fuel enters the bottom of the domain and

products exit the top boundary. The swirl lines represent vortical 
ow due to the counter

rotating vortex pair. The modelled domain is 0:4� 1:6 cm; symmetry is imposed along the

sides to avoid modelling the dotted region.

species, 83-reaction methane mechanism presented by Smooke et al. [33]. We incorporate the

databases provided with CHEMKIIN-III [16] for evaluating thermodynamic and transport

properties. The problem geometry is speci�ed in Figure 4. Following the work of Mohammed

et al., we consider both a steady 
ame and a transient 
ame where the transient behavior

is induced by a 20Hz perturbation in the fuel in
ow velocity. In particular, the fuel (CH4,

diluted with 35% N2 by volume) is injected with the velocity pro�le

v = 70

 
1�

r2

R2
1

!
[1 + � sin (!t)] cm s�1: (22)

where � and ! are the amplitude and frequency of perturbation, respectively. Co
ow air is

injected at 35 cm s�1 through the annular region between R1+Æ and R2. The region between

R2 and R3, and the vertical sides of the chamber are bounded by a wall at 298K, and the

top is open to atmospheric pressure. Note the outer wall radius and domain height in our

speci�cation are smaller those in [24]. We found that the details of the 
ame were insensitive

to either of these parameters. The entire computational domain is �lled initially with room

temperature air, except for a small hot spot spanning the fuel and air inlets to ignite the
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Figure 2. Enthalpy, Temperature, and XH2O2

contours at t = 53:6�s. In the AMR results

(left), regions covered by �ne grid (�x = 31:25�m) are unshaded, while less re�ned areas

(�x = 62:5; 125�m) are shaded progressively darker. The single-grid results have been

re
ected about x = 0:4cm to ease comparison.

Figure 3. Enthalpy, Temperature, and XH2O2 contours at t = 85:3�s. In the AMR

results (left), regions of �ne grid (�x = 31:25�m) are unshaded, while less re�ned areas

(�x = 62:5; 125�m) are shaded progressively darker. The single-grid results have been

re
ected about x = 0:4cm to ease comparison.
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δ
R2R1

R3
H

Figure 4. Schematic of the di�usion 
ame setup. Here, R1 = 2 mm, Æ = 0:38 mm, R2 = 2:5

cm, R3 = 5:12 cm, and H = 10:24 cm.


ame. We then allow the 
ow to evolve numerically on a coarse grid (�x = 0:08 cm) to

a stable 
ame pattern. Interestingly, we found that very small time steps were required

during the early transient. Attempting to use larger time steps based on CFL considerations

on these coarse grids led to problems with the 
ame blowing out. We conjecture that this

behavior is related to an interplay between chemistry and di�usion that is not adequately

represented with large time steps in the present operator-split framework.

For the steady case (� = 0 in (22)), we computed the solution with a base grid of 32�64,

plus two levels of additional re�nement. The �rst level re�nes the base grid by a factor of two

based on temperature in order to capture the gross features of the 
ame. The �nest level is a

factor of four �ner for an e�ective resolution of 256� 512, and localizes grids around regions

of high CH concentration. We studied the behavior of our solution with further re�nement

by performing two additional computations beginning with the steady three-level solution,

and adding additional localized grid based on XCH, re�ned by a factor of two or four, for

e�ective resolutions of 0:01 cm. and 0:005 cm, respectively. Each of these runs were then

time-advanced until their solutions again relaxed to steady state.

Raster images of temperature and XCH are shown in Figures 5 and 6, respectively.

For temperature, we show results only for the most re�ned solution, as the three cases are

virtually indistinguishable. The computed results have been mirrored across r = 0 for ease

of comparison with the experimental data presented in [24]. For these steady results we

compute a 
ame lift-o� height of 0:27 cm for the base case and 0:23 cm for the two �ner

cases. (Following Mohammed et al. we de�ne the 
ame lift-o� height as the lowest z location

where the 
ame reaches 1000K.) Mohammed et al. report an experimental lift-o� height of

between 0:16 and 0:22 cm but they obtain a computational lift-o� height of 0:66 cm. We

also compute a maximum centerline temperature of 2029K (compared with 2025K reported

by Mohammed et al. without radiative losses) occurring at 3:08 cm on the base computation

and 3:17 cm for the two �ner cases. These data give a predicted 
ame length of 2:81 cm for
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 298

586.5

 875

1163.5

1452

1740.5

2029

Figure 5. Re�ned temperature �eld (in K) for the steady di�usion 
ame, re
ected about

the origin. The subregion shown spans �1:12� 7:52 cm. Grids bounded by white, cyan and

green boxes have �x = 0:005; 0:02 and 0:08 cm, respectively.

the base case and 2:94 cm for the re�ned cases.

One feature of our methodology is that we conserve both enthalpy and species mass

density. In doing so our computed solution does not maintain thermodynamic pressure

exactly at ambient conditions. In Figure 7 we show the thermodynamic pressure computed

from the species densities and enthalpy obtained from the numerical solution. For this

problem the ambient pressure is constant at 101325 Pa. The �gure shows the computed

results in a small 0:4 cm square region near the inlet and the 
ame tip. The results show

that the deviation from ambient pressure converges to zero as the mesh is re�ned, and does

not build up over long-time integrations.

For the �nal example we model the transient version of the Mohammed et al. [24]

di�usion 
ame, obtained by oscillating the fuel inlet 
ow rate. In Equation 22, we set
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0.00e+00

4.76e-07

9.52e-07

1.43e-06

1.90e-06

2.38e-06

2.86e-06

Figure 6. XCH for the steady di�usion 
ame, re
ected about the origin. The subregion

shown spans �0:8 � 3:2 cm. The �nest grids are clustered around the peak XCH values,

and have mesh spacings �x = 0:02; 0:01 and 0:005 cm, in the �gures from left to right,

respectively.

95250

97453.7

99657.3

101861

Figure 7. Computed thermodynamic pressure in Pa at the 
ame tip. Maximum error

values with respect to atmospheric pressure, from left to right are 6075, 2107 and 556 Pa,

for respective grid spacings, �x = 0:02; 0:01; 0:005 cm.

! = 20Hz and consider cases with � =0.25 and 0.50. We perform simulations at the same

e�ective resolution as the coarse case in the steady simulations above (ie. �x = 0:02 cm).

In Figures 8 and 9 we show a time sequence of temperature and CH mole fraction through

one period of oscillation of the 
ame for the weaker perturbation. In Figures 10 and 11 we

show the comparable results for the stronger perturbation. For the weaker perturbation we

see excellent agreement in the shape of the CH pro�les with the experimentally observed

pro�les from Mohammed et al. ; however, the overall extent of the variation is less than

the experimentally observed values. The evolution for the larger perturbation is more

violent than the experimental observations suggesting that the level of perturbation in the

experiment is between 0:25 and 0:50. The experimental perturbation is not reported in [24].
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 298

 587

 876

1165

1454

1743

2032

Figure 8. Temperature (in K) for � = 0:25, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, re
ected

about the origin. The region shown spans �1:12� 7:52 cm.

0.00e+00

3.51e-07

7.02e-07

1.05e-06

1.40e-06

1.75e-06

2.10e-06

Figure 9. XCH for � = 0:25, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, re
ected about the origin.

The region shown spans �0:88� 4:88 cm.
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Figure 10. Temperature (in K) for � = 0:50, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, re
ected

about the origin. The region shown spans �1:12� 7:52 cm.

0.00e+00

3.64e-07

7.28e-07

1.09e-06

1.46e-06

1.82e-06

2.18e-06

Figure 11. XCH for � = 0:50, at 0.01, 0.02, 0.03, 0.04, and 0.05 s, re
ected about the

origin. The region shown spans �0:88� 4:88 cm.
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6. Summary and conclusion

In this paper we have presented a new adaptive algorithm for solving the equations

governing low Mach number combustion with complex kinetics. The overall approach

is based on a projection formulation and uses a discrete form of the low Mach number

equations that conserve both species and enthalpy. The extension to adaptive re�nement

uses subcycling in time with a synchronization step whenever coarse and �ne grids reach

the same time that enforces the conservation and free-stream preservation properties of the

single grid algorithm.

We have demonstrated that the method converges at or near second-order for velocity,

temperature and species and that the adaptive algorithm is able to compute essentially the

same solution as a uniform �ne grid for premixed combustion. We have also demonstrated

convergence of the method for a di�usion 
ame and have correctly predicted the 
ame lift

o� height for a co-
owing methane/air di�usion 
ame.

The adaptive algorithm here is implemented using the parallel BOXLIB framework

developed by Rendleman et al. [31, 9] so that the code can run e�ectively on modern parallel

architectures. A more detailed discussion of parallelization issues for the methodology

presented here will be given in future work. We are also pursuing a number of algorithm

enhancements and extensions such as models for radiation and a more complete model for

transport. Finally, we are exploring a range of applications of this methodology to the study

of fundamental issues in methane and hydrogen combustion.
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